skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dias, Henrique_Moura"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY Photosynthetic organisms must cope with rapid fluctuations in light intensity. Nonphotochemical quenching (NPQ) enables the dissipation of excess light energy as heat under high light conditions, whereas its relaxation under low light maximizes photosynthetic productivity. We quantified variation in NPQ kinetics across a large sorghum (Sorghum bicolor) association panel in four environments, uncovering significant genetic control for NPQ. A genome‐wide association study (GWAS) confidently identified three unique regions in the sorghum genome associated with NPQ and suggestive associations in an additional 61 regions. We detected strong signals from the sorghum ortholog ofArabidopsis thaliana Suppressor Of Variegation 3(SVR3) involved in plastid–nucleus signaling. By integrating GWAS results for NPQ across maize (Zea mays) and sorghum‐association panels, we identified a second gene,Non‐yellowing 1(NYE1), originally studied by Gregor Mendel in pea (Pisum sativum) and involved in the degradation of photosynthetic pigments in light‐harvesting complexes. Analysis ofnye1insertion alleles inA. thalianaconfirmed the effect of this gene on NPQ kinetics in eudicots. We extended our comparative genomics GWAS framework across the entire maize and sorghum genomes, identifying four additional loci involved in NPQ kinetics. These results provide a baseline for increasing the accuracy and speed of candidate gene identification for GWAS in species with high linkage disequilibrium. 
    more » « less